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LETTER TO THE EDITOR 

The multi-nuclei growth equation for a 
vacuum-deposited thin film 
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+Department of Physics, Nagoya University, Nagoya 464-01, Japan 
$Department of Applied Physics, Nagoya University, Nagoya 464-01, Japan 

Received 2 October 1989 

Abstract. We study the early stage behaviour of nucleus growth in a vacuum-deposited 
thin film. Solving a stationary diffusion equation with boundary conditions on each nuclei 
periphery, we derive for the first time the multi-nuclei growth equation. This equation is 
found to express the cooperative interactions among nuclei via the diffusion field. We also 
examine a linear stability of a growing nucleus €or many nuclei systems. 

Recently nucleus growth processes on substrates have attracted much attention in many 
areas of condensed matter physics [l]. Such phenomena are widely seen in nature, i.e. 
vapour-deposited thin films [2], wetting [3], breath figures [4], and two-dimensional 
Ostwald ripening [5] .  

In the present letter we discuss the early stage behaviour of nucleus growth in a 
vacuum-deposited thin film. Sigsbee has studied this growth process on the basis of the 
surface diffusion theory of adsorbed deposit atoms (called adatoms) [6] .  However, he 
has ignored the cooperative effects among nuclei via the diffusion field. Subsequent 
authors have discussed such effects phenomenologically. Here we derive the multi- 
nuclei growth equation which may be a starting equation for studying the cooperative 
effects systematically. 

In the following discussions it is assumed [6] that: 

(i) a stable nucleus is immobile and has the shape of a spherical cap, i.e. portion of 

(ii) a contact angle 8 is constant during growth process; 
(iii) the effects of direct impingement of incident atoms to a nucleus is negligible, 

since we have considered the small cap-shaped nuclei in the early stage, and thus the 
growth rate is controlled by the rate of diffusive adatoms transported along the periphery 
of the nucleus; 

(iv) at each nucleus periphery, the assumption of local equilibrium is maintained; 
(v) the mean distance between nuclei is much larger than their radii. 

We consider an ensemble of Nnuclei with projected radii RI centred at XI (1 s j s iV), 
as is shown in figure 1. Under the above assumptions the growth rate of the jth nucleus 
volume V, is given in terms of adatom concentration n(r,  t )  at position r on the substrate 
and time t by 

a sphere, as is shown in figure 1; 

(d/dt)  V ,  = 2nvDB( j )  (1) 
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Figure 1. Geometry of the ith cap-shaped nucleus 
growing on a substrate. 

with 
Vi = (4n/3)f(e) sin-3 f3R; (2) 

(3) 

where D is the adatom surface diffusion constant, U the atomic volume of an adatom, r, 
and w, are, respectively, the position vector and corresponding angle variable on the 
periphery of the jth nucleus, n(w,) the outward unit vector normal to the jth periphery, 
and f( 0 )  the geometric correction term for the cap-shaped nucleus volume given by 
f ( f3)  = 2(2-3 cos f3 + cos3 8)/3. Here V,n(r,, t )  denotes Vn(r ,  t )  evaluated at r = r,, and 
$ dw, denotes s%” d w,. The adatom concentration n(r, t )  can be found from a solution 
of the continuity equation in the cylindrical coordinate [6] 

(a/at)  n(r, t )  = DV2n(r, t )  + f i / t  - n(r, t ) / t  (4) 

n(r,, t )  n,(R,) neqSz ( 5 )  
n(r, t )  + ti for Irl+ (6) 

with boundary conditions 

with 

where t is the mean absorption tirne of an adatom, n,(R,) the local equilibrium con- 
centration at r = r,, ii the average concentration, and R, the projected radius of critical 
nucleus. Here the second term in the right-hand side of (4) represents the impingement 
of atoms on the substrate, while the last term represents the re-evaporation of adatoms. 

Now let us solve (4) with boundary conditions ( 5 )  and (6). In order to take into 
account the effects of the presence of many nuclei, we add a fictitious sink term T(r, t )  
to (4), which is defined by [7 ,8]  

neq = ne(w> S = Z/n,, z = R,/R, 

T(r, t )  = -neq dw,6(r - r,)c,(w,) 
I 

( 7 )  

where c, denotes the strength of the fictitious source located on the nucleus periphery. 
We later determine ci to satisfy the boundary conditions. The formal solution of (4) with 
(7) under the quasi-static approximation an/at = 0 is given by 

dwj G(r - rj )ci (wi)  (8) 
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where the two-dimensional Green function with D(V2 - L-*)G(r) = - 6(r)  is given by 

where K O  is the modified Bessel function and L2  = D t .  

the equation for G(r) and L S R,, we have [8, 91 

G(r> = (1/2nD)K,( lrI /L)  (9) 

Here we consider the relation between B ( j )  and c,. Substituting (8) into (3) and using 

B ( j )  = - - p dw,c,(w,). (10) 2 n D  
Thus we need to obtain the equation for c,. For this end we introduce here K,  (w, , w; ) 
which is defined on the periphery of the jth nucleus and is the reciprocal of G, (w, , w,’ ) 
= G(r, - r; ). That is 

fdwj’K,(w,, w;’)G,(w;’, w,’) = 6 ( w ,  - w,’). (11) 

Then from (8) with r = r, and using ( 5 )  and (11) we obtain the following equation for c,: 

where we have replaced G(r, - r,) by G(X, - X,) because lr, - r,I = IX, - X,i, and have 
also used 

(13) 
D 

pK,(w,>w:)dw, = ~ , i R , I ~ ) K o ( R , / L ) ’  
Relation (13) arises as a consequence of the following expansion of GI and K, in the 
normalised circular harmonics Y,(w)  = (2n)p1/2 exp(inw): 

As a result we obtain the nucleus growth equation for R, 
(d/dt) R, = [LID ~in~0 /2 f (O) ]R;~B( j )  

This equation is a starting equation in studying the nuclear growth process for multi- 
nuclei system. Equation (18) is found to consist of three terms. The first two terms are 
the mean field terms which are similar to those of Sigsbee, since for small x 

can be used. The last term in (18) represents the spatial interaction between nuclei, 
which was not studied by any of the previous authors. 

Finally we examine the linear stability of the shape deformation p,(w,) of a growing 
nucleus. We expand p,(w,) as 

[IO (x)Ko (x>l = xK1 (X)/K” (XI (19) 

P,(w,) = R, + C a f l ( i ) Y n ( w , > .  (20) 
f l 3 l  
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Substituting (20) into (17) we have up to first order in a,( j )  

Znm(ji) = - dw,  dw, exp(inw, +imw,)K,(lri - r l l /L )  

F,( j i )  = -2R,R,Zno(ji) - 2  

2n ‘ f  f 
R,am(i)(l +m)Z,,(ji) 

m a l  

The first term in the right-hand side of (21) gives the Mullins-Sekerka type instability 
[lo] .  Many-body effects enter through (d/dt) Ri in the right-hand side of (21). These 
results are similar to those for two- and three-dimensional Ostwald ripening [8, 111. 

To summarise, we have derived the nucleus growth equation in a vacuum-deposited 
thin film. This equation expresses the early stage behaviour of a growth process in the 
presence of many nuclei. We have also examined the linear stability of a growing nucleus. 
These results seem to suggest that the cooperative effects among nuclei play an important 
role on growth processes. The detailed derivation of formulae and further analyses of 
(17) and (21) will be given elsewhere. 
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